PRODUCT SPECIFICATION
Rechargeable Lithium Ion Battery
Model: ICR18650 C2 2800mAh

<table>
<thead>
<tr>
<th>Prepared</th>
<th>Reviewed</th>
<th>Approved</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kim, Bong Tae</td>
<td>Ku, Cha Hun</td>
<td>Ahn, Soon Ho</td>
</tr>
<tr>
<td>Date: '10.04.14'</td>
<td>Date: '10.04.14'</td>
<td>Date: '10.04.14'</td>
</tr>
</tbody>
</table>

LG Chem
20 YOIDO-DONG YOUNGDUNGPO-GU,
SEOUL 150-721, KOREA
TEL: (82) 2-3773-1114 FAX: (82) 2-3773-7005
http://www.lgchem.com
Revision History

<table>
<thead>
<tr>
<th>Revision</th>
<th>Date</th>
<th>Originator</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>2009-10-27</td>
<td>Kim, Bong Tae</td>
<td>Original Release</td>
</tr>
<tr>
<td>1</td>
<td>2010-03-18</td>
<td>Kim, Bong Tae</td>
<td>- Cell printing was changed</td>
</tr>
<tr>
<td>2</td>
<td>2010-04-14</td>
<td>Kim, Bong Tae</td>
<td>Addition of cell voltage range (shipping state)</td>
</tr>
</tbody>
</table>
Contents

1. General Information ... 4
 1.1 Scope
 1.2 Application
 1.3 Product Classification
 1.4 Model Name

2. Nominal Specification .. 4
 2.1 Capacity
 2.2 Nominal Voltage
 2.3 Standard Charge
 2.4 Max. Charge Voltage
 2.5 Max. Charge Current
 2.6 Standard Discharge
 2.7 Max. Discharge Current
 2.8 Weight
 2.9 Operating Temperature
 2.10 Storage Temperature (for shipping state)

3. Appearance and Dimension .. 5
 3.1 Appearance
 3.2 Dimension

4. Performance Specification .. 5
 4.1 Standard Test Condition
 4.2 Electrical Specification
 4.3 Environmental Specification
 4.4 Mechanical Specification
 4.5 Safety Specification

5. Cautions and Prohibitions in Handling 8
1. General Information

1.1 Scope

This product specification defines the requirements of the rechargeable lithium ion battery to be supplied to the Customer by LG Chem.

1.2 Application: Note PC

1.3 Product classification: Cylindrical rechargeable lithium ion battery

1.4 Model name: ICR18650C2

2. Nominal Specification

<table>
<thead>
<tr>
<th>Item</th>
<th>Condition / Note</th>
<th>Specification</th>
</tr>
</thead>
</table>
| 2.1 Capacity | Std. charge / discharge | Nominal 2800mAh (C_{nom})
Minimum 2700mAh (C_{min}) |
| 2.2 Nominal Voltage | Average | 3.72V |
| 2.3 Standard Charge (Refer to 4.1.1) | Constant current
Constant voltage
End current(Cut off) | 0.5C (1350mA)
4.30V
50mA |
| 2.4 Max. Charge Voltage | | 4.30V |
| 2.5 Max. Charge Current | | 1.0C (2700mA) |
| 2.6 Standard Discharge (Refer to 4.1.2) | Constant current
End voltage(Cut off) | 0.2C (540mA)
3.0V |
| 2.7 Max. Discharge Current | -20 ~ 5℃
5 ~ 45℃
45 ~ 60℃ | 0.5C (1350mA)
2.0C (5400mA)
1.5C (4050mA) |
| 2.8 Weight | Approx. | Max. 50.0 +/- 3.0 g |
| 2.9 Operating Temperature | Charge
Discharge | 0 ~ 45℃
-20 ~ 60℃ |
| 2.10 Storage Temperature (for shipping state) | 1 month
3 month
1 year | -20 ~ 60℃
-20 ~ 45℃
-20 ~ 20℃ |
| 2.11 Cell Voltage (for shipping state) | Voltage range | 3.7 ~ 3.9V |
3. Appearance and Dimension

3.1 Appearance
There shall be no such defects as deep scratch, crack, rust, discoloration or leakage, which may adversely affect the commercial value of the cell.

3.2 Dimension
Diameter: \(18.29 \pm 0.11\) mm, \(A\) (Max. \(18.40\) mm)
Diameter is defined as the largest data value measured on the "A" area of a cylindrical cell.
Height: \(\leq 65.05\) mm

- Definition of Cell Printing will be added after changing printing

4. Performance Specification

4.1 Standard test condition

4.1.1 Standard Charge
Unless otherwise specified, "Standard Charge" shall consist of charging at constant current of 0.5C. The cell shall then be charged at constant voltage of 4.30V while tapering the charge current. Charging shall be terminated when the charging current has tapered to 50mA. For test purposes, charging shall be performed at \(23^\circ\)C ± 2°C.

4.1.2 Standard Discharge
“Standard Discharge” shall consist of discharging at a constant current of 0.2C to 3.0V. Discharging is to be performed at 23 °C ± 2 °C unless otherwise noted (such as capacity versus temperature).

4.1.3 Fast Charge / discharge condition
Cells shall be charged at constant current of 0.5C to 4.30V with end current of 50mA. Cells shall be discharged at constant current of 0.5C to 3.0V. Cells are to rest 10 minutes after charge and 20 minutes after discharge.

4.2 Electrical Specification

<table>
<thead>
<tr>
<th>Item</th>
<th>Condition</th>
<th>Specification</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.2.1 Initial AC Impedance</td>
<td>Cell shall be measured at 1kHz after charge per 4.1.1.</td>
<td>$\leq 70 \text{ m\Omega}$, with PTC</td>
</tr>
<tr>
<td>4.2.2 Initial Capacity</td>
<td>Cells shall be charged per 4.1.1 and discharged per 4.1.2 within 1h after full charge.</td>
<td>$\geq 2700 \text{ mAh (C}_{\text{min}} \text{)}$</td>
</tr>
<tr>
<td>4.2.3 Cycle Life</td>
<td>Cells shall be charged and discharged per 4.1.3 300 cycles. A cycle is defined as one charge and one discharge. 301st discharge capacity shall be measured per 4.1.1 and 4.1.2</td>
<td>$\geq 75%$ (of C_{min} in 2.1)</td>
</tr>
</tbody>
</table>

4.3 Environmental specification.

<table>
<thead>
<tr>
<th>Item</th>
<th>Condition</th>
<th>Specification</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.3.1 Storage Characteristics</td>
<td>Cells shall be charged per 4.1.1 and stored in a temperature-controlled environment at 23°C ± 2°C for 30 days. After storage, cells shall be discharged per 4.1.2 to obtain the remaining capacity.</td>
<td>Capacity remaining rate $\geq 90%$ (C_{min} in 2.1)</td>
</tr>
<tr>
<td>4.3.2 High Temperature Storage Test</td>
<td>Cells shall be charged per 4.1.1 and stored in a temperature-controlled environment at 60°C for 1 week. After storage, cells shall be discharged per 4.1.2 and cycled per 4.1.3 for 3 cycles to obtain recovered capacity*.</td>
<td>No leakage, Capacity recovery rate $\geq 80%$</td>
</tr>
</tbody>
</table>

* Remaining Capacity : After storage, cells shall be discharged with Std. condition(4.1.2) to measure the remaining capacity.

** Recovery Capacity : After storage, cells shall be discharged with fast discharge condition(4.1.3), and then cells shall be charged with std. charge condition(4.1.1), and then discharged with Std. condition(4.1.2). This charge / discharge cycle shall be repeated three times to measure the recovery capacity.
4.3.3 High Temperature and High Humidity Test

Cells are charged per 4.1.1 and stored at 60°C (95% RH) for 168 hours. After test, cells are discharged per 4.1.2 and cycled per 4.1.3 for 3 cycles to obtain recovered capacity. No leakage, No rust. Capacity recovery rate $\geq 80\%$.

4.3.4 Thermal Shock Test

65°C (8h) \leftrightarrow 3hrs \rightarrow -20°C (8h) for 8 cycles with cells charged per 4.1.1. After test, cells are discharged per 4.1.2 and cycled per 4.1.3 for 3 cycles to obtain recovered capacity. No leakage. Capacity recovery rate $\geq 80\%$.

4.3.5 Temperature Dependency of Capacity

Cells shall be charged per 4.1.1 at 23°C ± 2°C and discharged per 4.1.2 at the following temperatures.

<table>
<thead>
<tr>
<th>Temperature</th>
<th>Capacity</th>
</tr>
</thead>
<tbody>
<tr>
<td>-10°C</td>
<td>70% of C_{ini}</td>
</tr>
<tr>
<td>0°C</td>
<td>80% of C_{ini}</td>
</tr>
<tr>
<td>23°C</td>
<td>100% of C_{ini}</td>
</tr>
<tr>
<td>60°C</td>
<td>95% of C_{ini}</td>
</tr>
</tbody>
</table>

4.4 Mechanical Specification

<table>
<thead>
<tr>
<th>Item</th>
<th>Condition</th>
<th>Specification</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.4.1 Drop Test</td>
<td>Cells charged per 4.1.1 are dropped onto an wooden floor from 4 feet height for 3 cycles, 2 drops from each cell terminal and 1 drop from the side of cell can (Total number of drops = 9).</td>
<td>No leakage, No temperature rising</td>
</tr>
<tr>
<td>4.4.2 Vibration Test</td>
<td>Cells charged per 4.1.1 are vibrated for 90 minutes per each of the three mutually perpendicular axis (x, y, z) with total excursion of 0.8mm, frequency of 10Hz to 55Hz and sweep of 1Hz change per minute</td>
<td>No leakage</td>
</tr>
</tbody>
</table>

4.5 Safety Specification

<table>
<thead>
<tr>
<th>Item</th>
<th>Condition</th>
<th>Specification</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.5.1 Overcharge Test</td>
<td>Cells are discharged per 4.1.2, then charged at constant current of 3 times the max. Charge condition and constant voltage of 4.30V while tapering the charge</td>
<td>No explode, No fire</td>
</tr>
</tbody>
</table>
5. Caution and Prohibition in Handling
Warning for using the lithium ion rechargeable battery. Mishandling of the battery may cause heat, fire and deterioration in performance. Be sure to observe the following.

Caution
- When using the application equipped with the battery, refer to the user’s manual before usage.
- Please read the specific charger manual before charging.
- Charge time should not be longer than specified in the manual.
- When the cell is not charged after long exposure to the charger, discontinue charging.
- Battery must be charged at operating temperature range 0 ~ 45°C.
- Battery must be discharged at operating temperature range -20 ~ 60°C.
- Please check the positive(+) and negative(-) direction before packing.
- When a lead plate or wire is connected to the cell for packing, check out insulation not to short-circuit.
- Battery must be stored separately.
- Battery must be stored in a dry area with low temperature for long-term storage.
- Do not place the battery in direct sunlight or heat.
- Do not use the battery in high static energy environment where the protection device can be damaged.
- When rust or smell is detected on first use, please return the product to the seller immediately.
- The battery must be away from children or pets.
- When cell life span shortens after long usage, please exchange to new cells.

Prohibitions

- Do not use different charger. Do not use cigarette jacks (in cars) for charging.
- Do not charge with constant current more than maximum charge current.
- Do not disassemble or reconstruct the battery.
- Do not throw or cause impact.
- Do not pierce a hole in the battery with sharp things. (such as nail, knife, pencil, drill)
- Do not use with other batteries or cells.
- Do not solder on battery directly.
- Do not press the battery with overload in manufacturing process, especially ultrasonic welding.
- Do not use old and new cells together for packing.
- Do not expose the battery to high heat. (such as fire)
- Do not put the battery into a microwave or high pressure container.
- Do not use the battery reversed.
- Do not connect positive(+) and negative(-) with conductive materials (such as metal, wire)
- Do not allow the battery to be immersed in or wetted with water or sea-water.